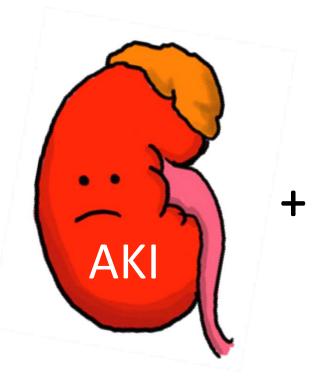
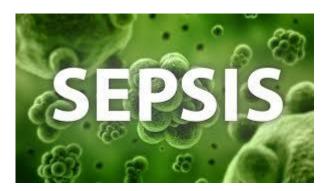


UNIL | Université de Lausanne

Service de médecine intensive adulte

Extracorporeal Treatment in Sepsis and the Place of CRRT

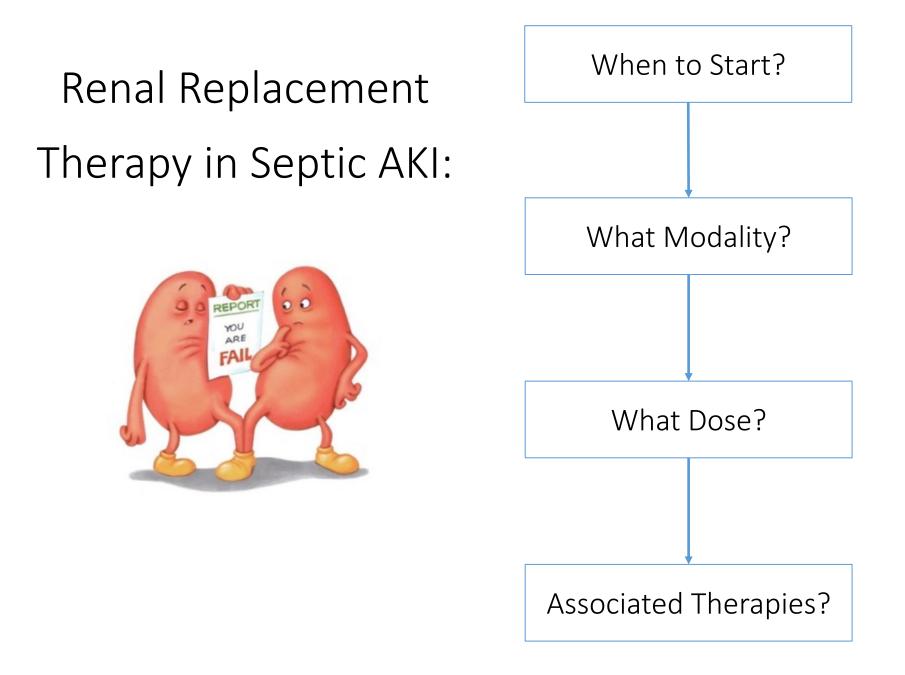

PD MER Antoine G. Schneider MD, PhD Tabriz, Iran, 20.11.2019

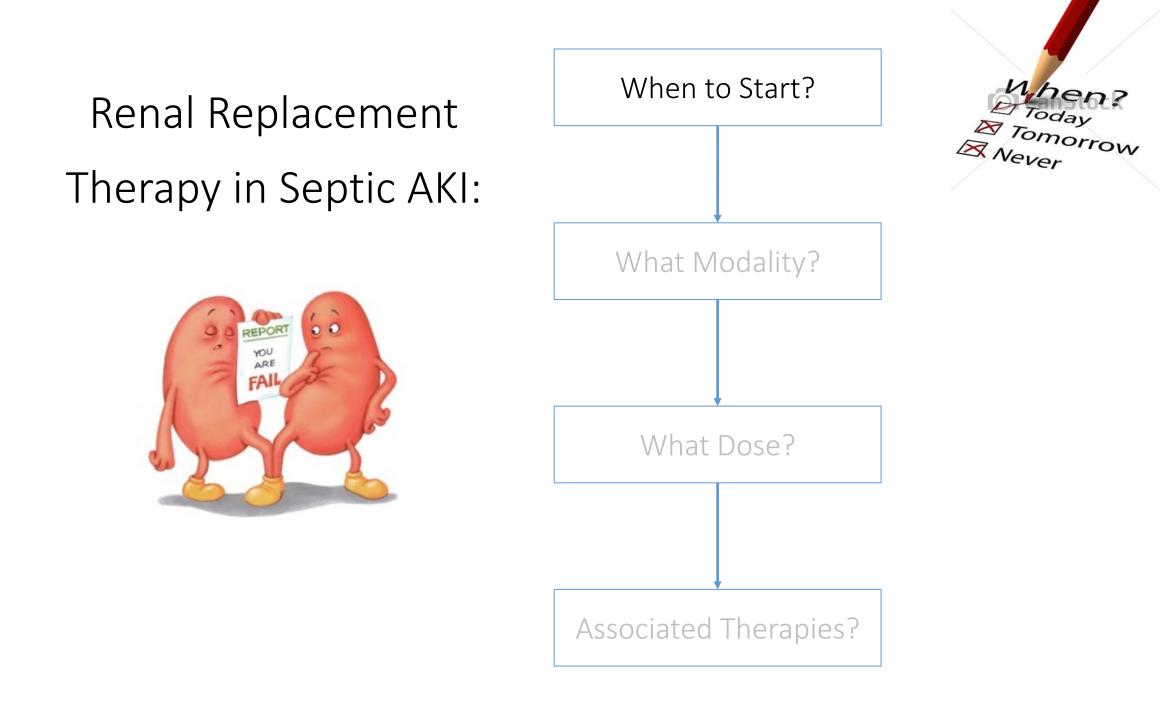

Disclosures

- Salary support by Canton de Vaud
- Grant support from the Leenaards Foundation, Switzerland
- Speaking / Consulting / Travel support from
 - Fresenius Medical Care
 - B. Braun Melsungen AG
 - Cytosorbents

Acute kidney injury in sepsis

Rinaldo Bellomo^{1,2*}, John A. Kellum³, Claudio Ronco^{4,5}, Ron Wald^{6,7}, Johan Martensson⁸, Matthew Maiden^{9,10}, Sean M. Bagshaw¹¹, Neil J. Glassford^{12,13}, Yugeesh Lankadeva¹⁴, Suvi T. Vaara¹⁵ and Antoine Schneider¹⁶




• Common

CrossMark

- Associated with ↑mortality
- Important issue in ICU

and when it is too severe...

Criteria for RRT Initiation

- 5.1.1: Initiate RRT emergently when life-threatening changes in fluid, electrolyte, and acid-base balance exist. (*Not Graded*)
- 5.1.2: Consider the broader clinical context, the presence of conditions that can be modified with RRT, and trends of laboratory tests—rather than single BUN and creatinine thresholds alone—when making the decision to start RRT. (*Not Graded*)

KDIGO Kidney International 2012: 2 (1)

No clear consensus regarding clinical criteria

Pros:

- Facilitates fluid balance control
- Improves acid-base status
- Corrects electrolytes abnormalities
- Early removal of kidney removed toxins?
- Removal of cytokines in early phases of sepsis?

Cons:

- Potential removal of salutary substances (antibiotics)
- Potential harm (catheter, hypotension, other complications)
- Higher cost

Effect of Early vs Delayed Initiation of Renal Replacement Therapy on Mortality in Critically III Patients With Acute Kidney Injury The ELAIN Randomized Clinical Trial

ORIGINAL ARTICLE

Initiation Strategies for Renal-Replacement Therapy in the Intensive Care Unit ORIGINAL ARTICLE

Timing of Renal-Replacement Therapy in Patients with Acute Kidney Injury and Sepsis

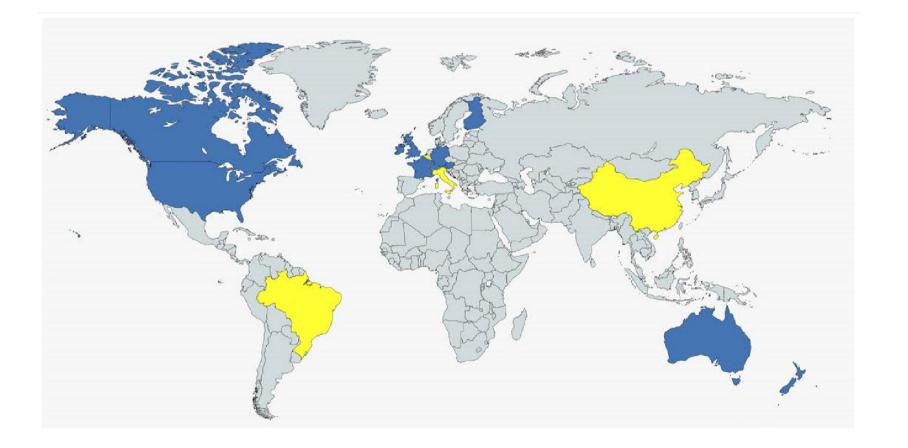
	ELAIN	ΑΚΙΚΙ	IDEAL ICU
Nb of centers	1 (Germany)	31 (France)	29 (France)
Number of patients	231	620	488
Main inclusion criteria	KDIGO Stage 2 个NGAL + sepsis, pressors, FO or 个SOFA	KDIGO stage 3 + MV and/or pressors	RIFLE F + early septic shock
Definition of Early	8 hr of KDIGO St. 2	6 hr of KDIGO St. 3	12 hr of RIFLE F
Definition of Late	12 hr of KDIGO St. 3	AKI complications	Emergency indication

Effect of Early vs Delayed Initiation of Renal Replacement Therapy on Mortality in Critically III Patients With Acute Kidney Injury The ELAIN Randomized Clinical Trial

Zarbock et al JAMA 2016

Altogether the burden of evidence seems to point toward the absence of benefit for early RRT initiation

However:


• This trial have not REALLY assessed RRT initiation timing (>50% of patients never received the therapy in AKIKI and IDEAL-ICU)

They demonstrate that:

- KDIGO criteria are not good predictors of the need for RRT
- *Early initiation based on KDIGO criteria* is not associated with a mortality benefit

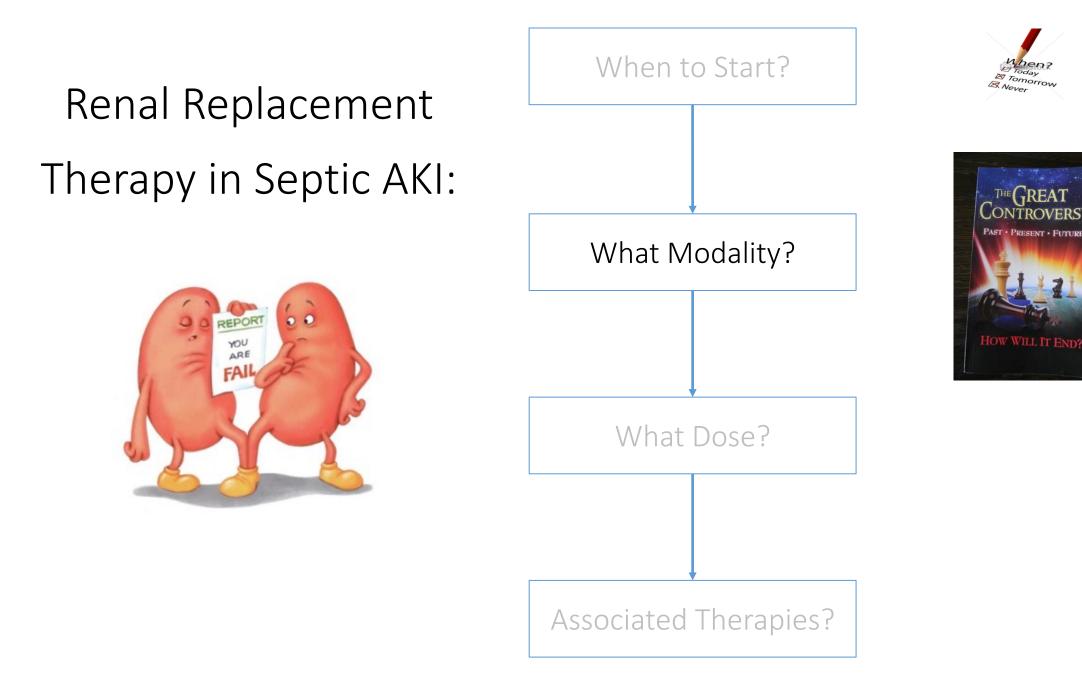
We need better biomarkers predicting the need for RRT and... more trials

STARRT[®]AKI

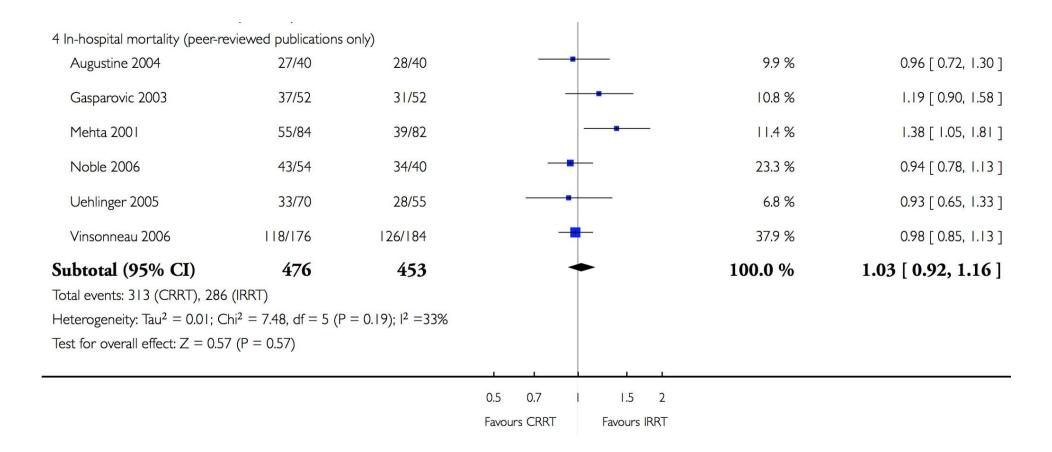
Enrollment for August 9th, 2019

Enrollment to date: 3000

Total target enrollment: 3000


Percentage of target recruitment: 100%

Current enrollment by country:


- Australia: 401
- Austria: 53
- Belgium: 46
- Brazil: 8
- Canada: 885
- China: 255
- Finland: 53
- France: 761
- Germany: 29
- Ireland: 3
- Italy: 4
- New Zealand: 165
- Switzerland: 40
- United Kingdom: 171
- United States: 126

So, When to Start RRT?

- Current evidence inconclusive, and both approaches can be accepted.
- Later initiation associated with lower short term costs...
- (many) new data coming... stay tuned

CRRT vs IRRT: Mortality

Rabindranath Cochrane Database Syst Rev 2007 Issue 3

Renal Recovery

	IRR	т	CRR	т		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.1.1 Observational							
Andrikos 2009	1	4	5	33	1.5%	1.65 [0.25, 10.81]	
Bagshaw 2006	15	42	12	54	7.0%	1.61 [0.84, 3.06]	
Bell 2007	26	158	78	944	9.8%	1.99 [1.32, 3.00]	
CartinCeba 2009	256	555	26	229	10.3%	4.06 [2.80, 5.90]	-
Chang 2004	4	44	1	11	1.3%	1.00 [0.12, 8.08]	
Elsevier 2010	37	175	13	98	7.7%	1.59 [0.89, 2.85]	
Garcia-Fernandes 2011	0	16	0	55		Not estimable	
Gonwa 2001	1	6	4	25	1.4%	1.04 [0.14, 7.71]	
Jacka 2005	9	14	3	24	3.5%	5.14 [1.66, 15.89]	
Lin 2009	11	54	10	83	5.7%	1.69 [0.77, 3.71]	+
Lins 2006	9	37	1	4	1.6%	0.97 [0.16, 5.83]	
Marshall 2012	5	56	2	16	2.1%	0.71 [0.15, 3.34]	
Park 2005	37	83	1	9	1.5%	4.01 [0.62, 25.86]	
Swartz 2005	24	110	10	64	6.7%	1.40 [0.71, 2.73]	
Uchino 2007	37	110	52	360	10.5%	2.33 [1.62, 3.35]	-
Waldrop 2005	7	12	6	14	5.8%	1.36 [0.63, 2.94]	+
Subtotal (95% CI)		1476		2023	76.4%	1.99 [1.53, 2.59]	•
Total events	479		224				
Heterogeneity: $Tau^2 = 0.0$,		,	(P = 0)	.04); $I^2 =$	42%	
Test for overall effect: Z	= 5.14 (P	< 0.00	001)				
1.1.2 RCT							
Abe 2010	2	25	3	19	1.8%	0.51 [0.09, 2.74]	
Augustine 2004	8	12	8	13	7.6%	1.08 [0.60, 1.95]	
Kumar 2004	3	12	1	8	1.3%	2.00 [0.25, 15.99]	
Lins 2009	15	60	11	65	6.5%	1.48 [0.74, 2.96]	
Mehta 2001	3	43	4	29	2.4%	0.51 [0.12, 2.09]	
Uehlinger 2005	1	27	1	37	0.8%	1.37 [0.09, 20.95]	
Vinsonneau 2006	6	61	4	61	3.1%	1.50 [0.45, 5.05]	
Subtotal (95% CI)	0	240	Т	232	23.6%	1.15 [0.78, 1.68]	•
Total events	38		32				
Heterogeneity: $Tau^2 = 0.0$		= 3.20		P = 0.78	3): $I^2 = 09$	6	
Test for overall effect: Z				- 0.70	5), 1 = 0/	0	
rescron overall encet. 2	5.7 ± (I	0.10	/				
Total (95% CI)		1716		2255	100.0%	1.73 [1.35, 2.20]	•
Total events	517		256				
Heterogeneity: $Tau^2 = 0$.				(P = 0)	.02); I ² =	44%	
Test for overall effect: Z							0.01 0.1 1 10 100
Test for subgroup differe	ences: Chi	$^{2} = 5.4$	5, df = 1	(P = 0	.02), $I^2 =$	81.7%	Favor IRRT Favor CRRT

Schneider et al ICM 2013

Intradialytic complications during hemodialysis

Andrew DAVENPORT University College London Centre for Nephrology, Royal Free Hospital, London, UK Hypotension is the most common intradialytic problem encountered in routine clinical practice.¹ Its incidence has been reported from < 5% to 40% of all treatments. In

with Acute Kidney Injury The VA/NIH Acute Renal Failure Trial Network*	Event	Intensive Strategy (N = 563)	Less-Intensive Strategy (N = 561)	P Value
1		no. of patients (%)		. ruiuc
	Any serious adverse event	287 (51.0)	280 (49.9)	0.72
	Not related to study therapy	207 (72.1)	202 (72.1)	
	Possibly or probably related to study therapy	48 (16.7)	51 (18.2)	
	Definitely related to study therapy	32 (11.1)	27 (9.6)	
	Nonfatal only‡	137 (47.7)	128 (45.7)	
	Catheter-related complications			
	Insertion-related complications	28 (5.0)	31 (5.5)	0.68
	Late catheter-related complications	48 (8.5)	38 (6.8)	0.27
	Hypotension			
	Requiring vasopressor support	81 (14.4)	56 (10.0)	0.02
	Requiring discontinuation of treatment	55 (9.8)	49 (8.7)	0.55
	Requiring other intervention	212 (37.7)	168 (29.9)	0.006
	Other treatment-related complications			
	Any nonhypotensive complication	216 (38.4)	194 (34.6)	0.19

Intermittent vs Continuous?

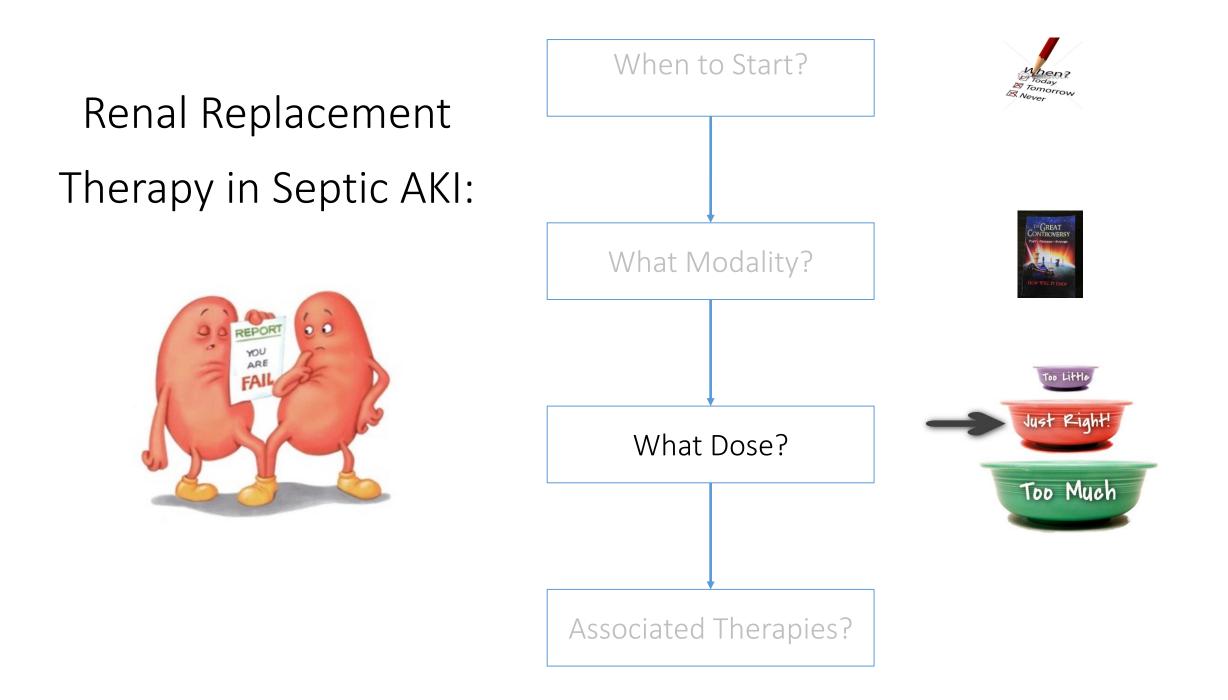
IRRT

CRRT

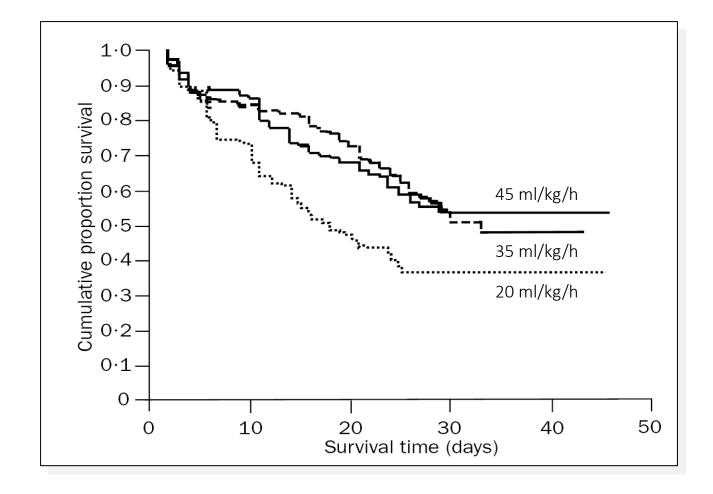
Unstable Septic Patients

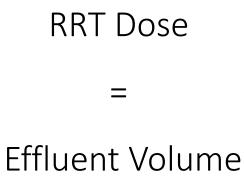
CRRT vs IRRT

easier to use

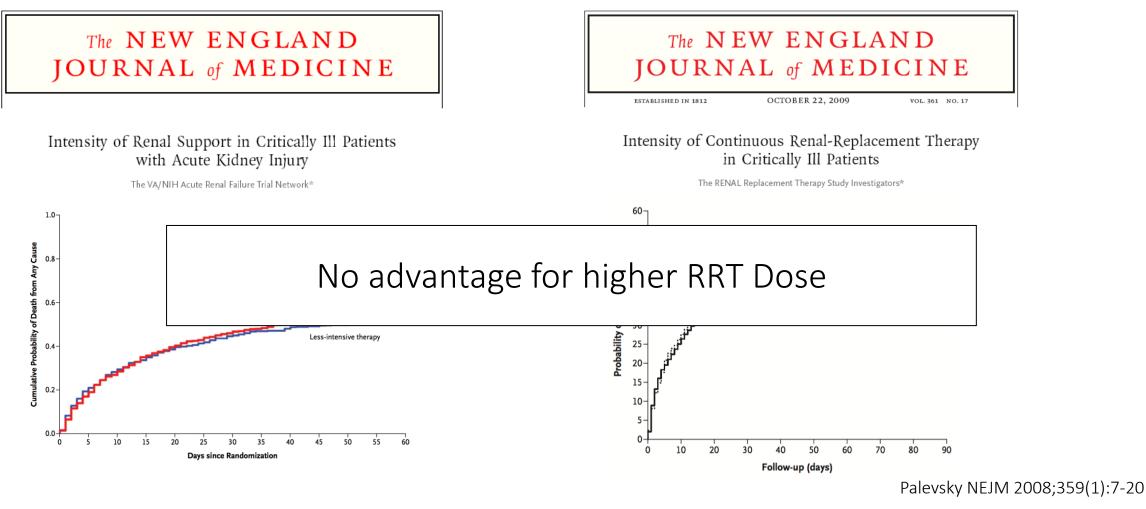

CRRT les

less hypotensive episodes


better renal recovery

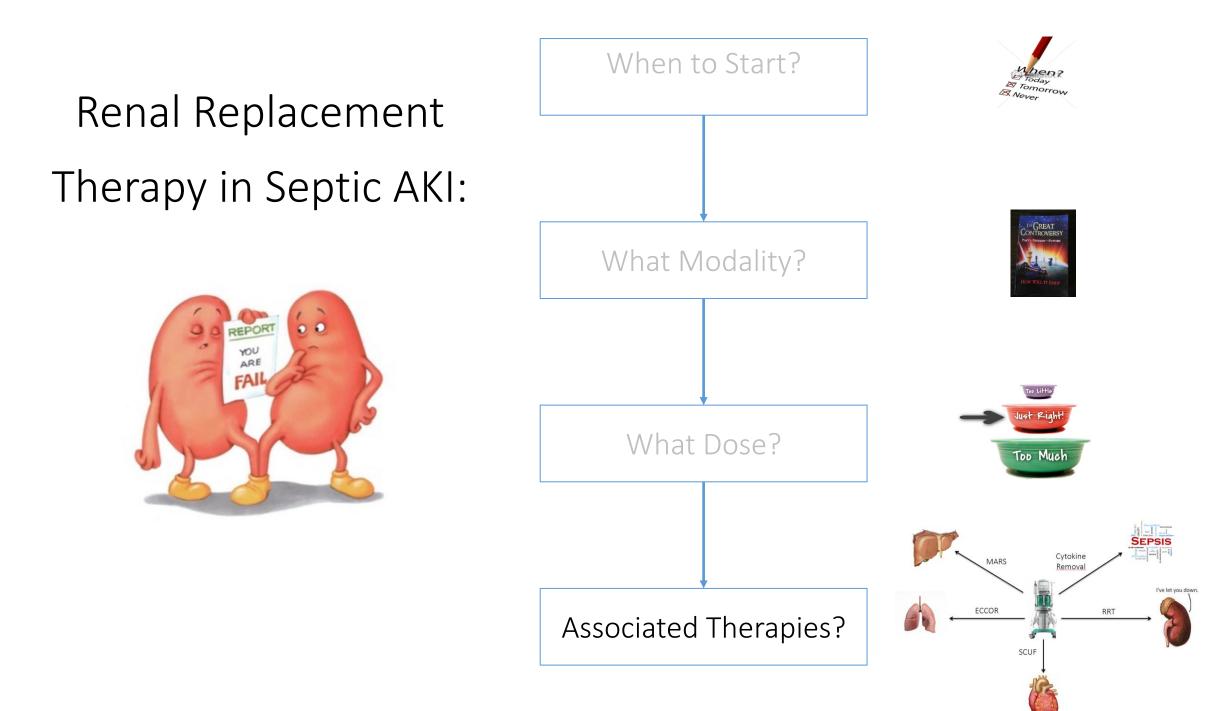

lower costs (accounting for long term costs)

Outside specific indications IRRT should probably not be used in septic AKI

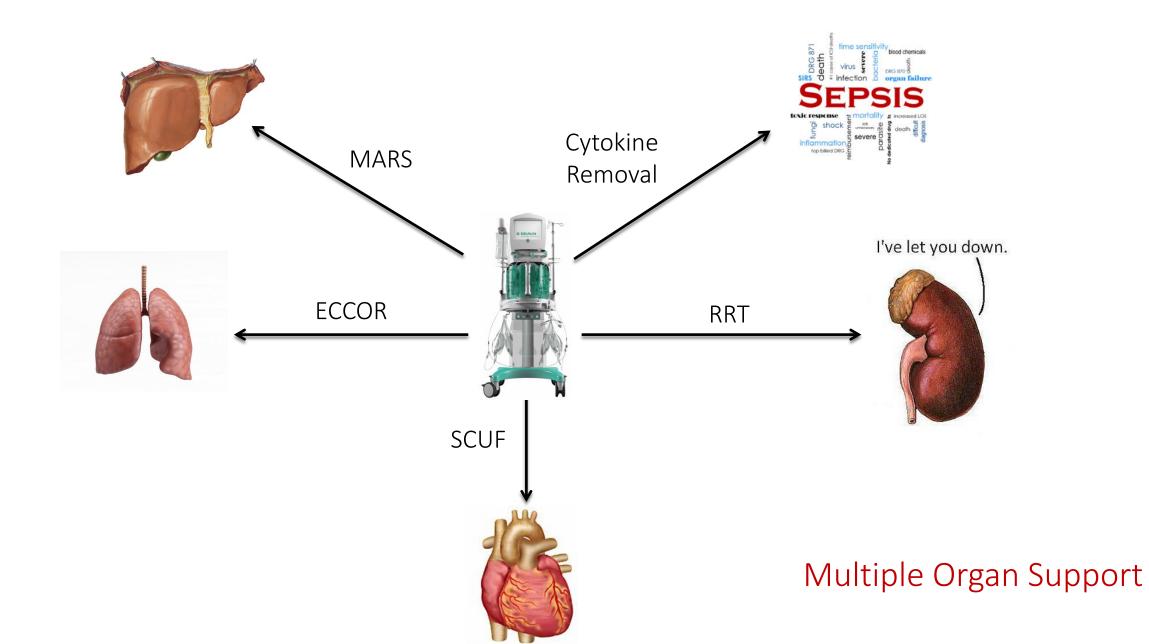

RRT Dose

Ronco Lancet 2000

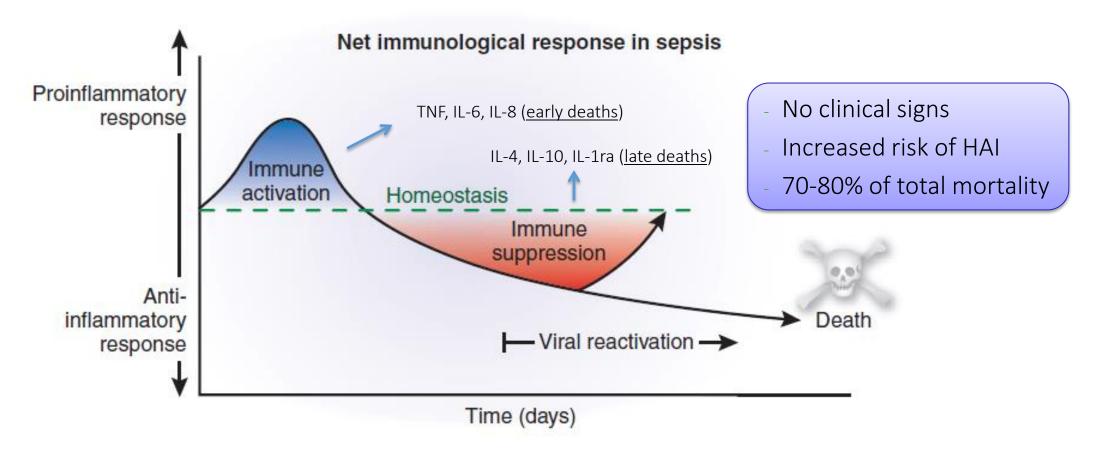
Two Large RRT RCTs


Bellomo NEJM 2009; 361(17):1627-1638

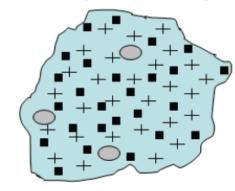
Practical Approach


- TARGET: 20-25 ml/kg/h of delivered effluent flow
- However, we need to compensate for DOWNTIME
 - Alarms
 - Radiology examinations (CT MR...)
 - Circuit clotting
 - Surgery

Might represent 3 to 8 hrs per day: 25% of the time


Prescribe: 25 to 30 ml/kg/h

Beyond Renal Replacement Therapy...



Sepsis: a Dysregulated Host Response to Infection

Singer et al. JAMA 2016;315(8):801-810. Hotchkiss et al. *Nat Med* 2009;15(5):496-497. Before blood purification

Infected tissue (e.g. abdomen, lung...)

Cytokine/Chemokine concentration gradient from plasma to infected tissue

Blood compartment

umber at rick

Time (days)

Efficacy of coupled plasma filtration adsorption (CPFA) in patients with septic shock: A multicenter randomised controlled clinical trial

Sergio Livigni,¹ Guido Bertolini,² Carlotta Rossi,² Fiorenza Ferrari,¹ Michele Giardino,² Marco Pozzato,³ Giuseppe Remuzzi,² GiViTI: Gruppo Italiano per la Valutazione degli Interventi in Terapia Intensiva (Italian Group for the Evaluation of Interventions in Intensive Care Medicine) is an independent collaboration network of Italian Intensive Care units

50

50

48

Time (days)

70

48

47

46

100%

75%

50%

25%

atients at risk Controls 93

CPEA

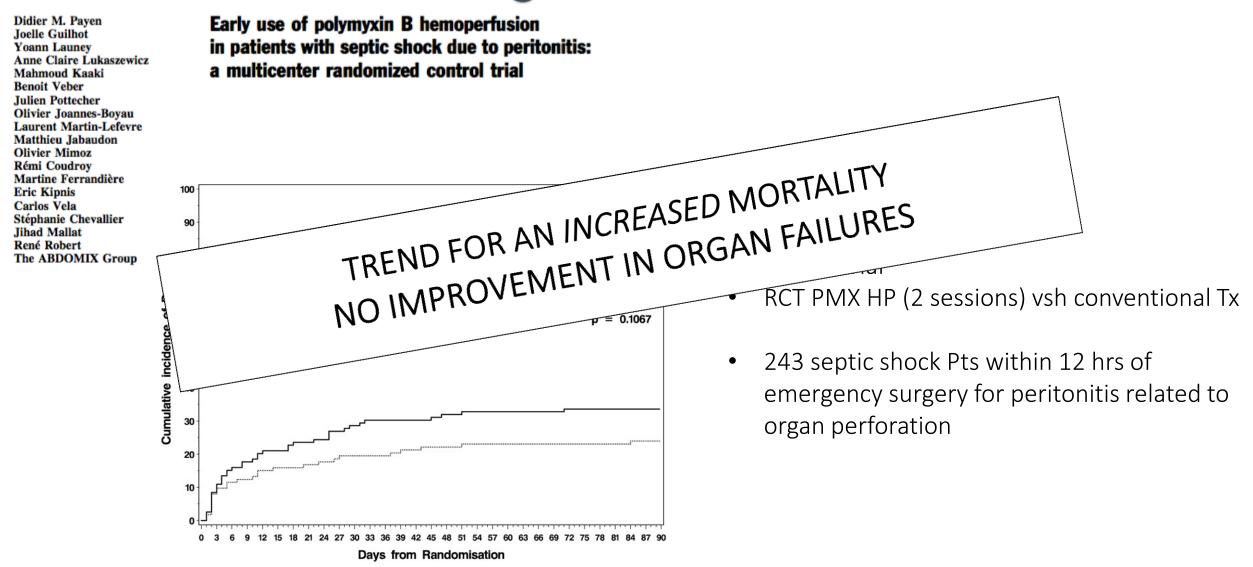
20

61

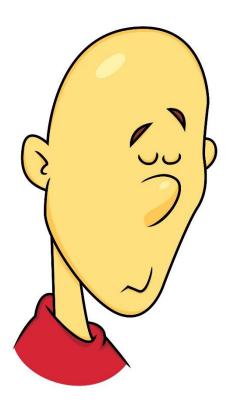
75

30

55


NO EFFECT ON HOSPITAL MORTALITY OR NEW ORGAN FAILURES RCT STOPPED EARLY FOR FUTILITY No difference in hospital mortality (primary), new organ failures or free-ICU days during the first 30 days

TTTTT IOhrs) for 5 days vs standard of care


Lower mortality in patients who received "full" CPFA dose ٠ >0.18 L/kg/d (OR 0.36, 95% CI 0.13 to 0.99)

accerminated for futility)

CrossMark

Should we just Forget about it?

CONFERENCE REPORTS AND EXPERT PANEL

CrossMark

Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016

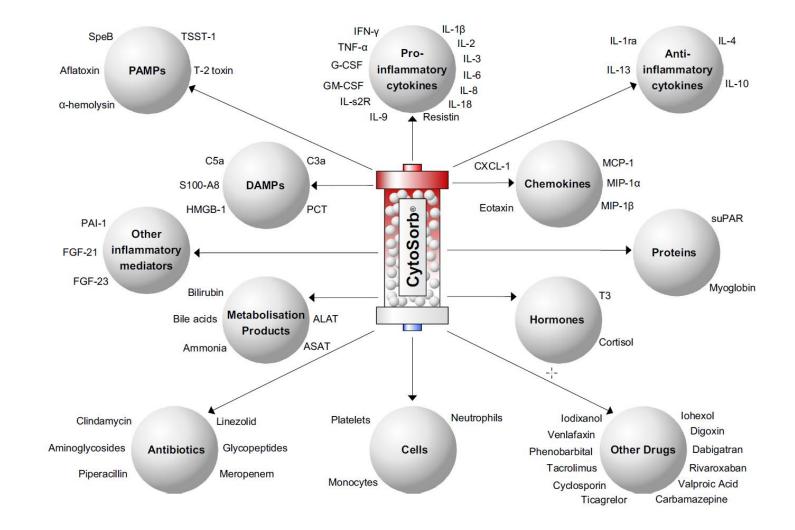
K. BLOOD PURIFICATION

1. We make no recommendation regarding the use of blood purification techniques.

In consideration of all these limitations, our confidence in the evidence is very low either in favor of or against blood purification techniques; therefore, we do not provide a recommendation. Further research is needed to clarify the clinical benefit of blood purification techniques.

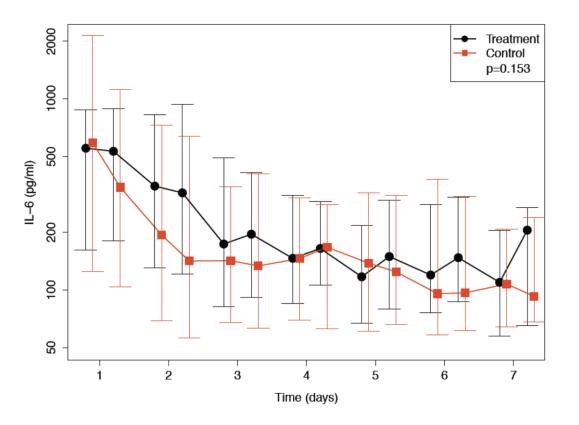
Hemoadsorption Devices

Device	Company	Composition	Substance Removed
PMX	Toray, Japan	PMX covalently bound to polypropylene- polystyrene fiber	Endotoxin
HA330	Jafron, China	Neutral resin	Cytokines
MG350	Biosun, China	Neutral resin	Cytokines
Cytosorb	Cytosorbents, USA	Polystyrenedivinyl benzene copolymer beads with biocompatible polyvinylpyrrolidone coating	Cytokines
LPS adsorber	Alteco, Sweden	Synthetic polypeptide bound to porous polyethylene discs	Endotoxin


WHAT'S NEW IN INTENSIVE CARE

Hemoadsorption with CytoSorb[®]

Elettra C. Poli¹, Thomas Rimmelé^{2,3} and Antoine G. Schneider^{1*}



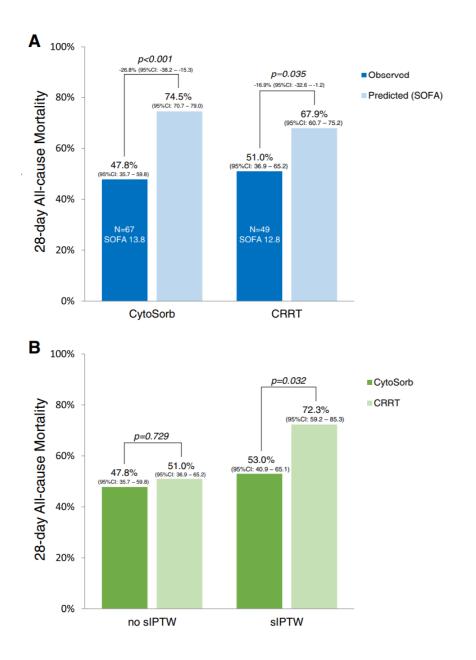
RESEARCH ARTICLE

The effect of a novel extracorporeal cytokine hemoadsorption device on IL-6 elimination in septic patients: A randomized controlled trial

Dirk Schädler^{1®}*, Christine Pausch^{2®}, Daniel Heise³, Andreas Meier-Hellmann⁴, Jörg Brederlau⁵, Norbert Weiler¹, Gernot Marx⁶, Christian Putensen⁷, Claudia Spies⁸, Achim Jörres⁹, Michael Quintel³, Christoph Engel², John A. Kellum¹⁰, Martin K. Kuhlmann¹¹

- 100 Mechanically ventilated patients with severe sepsis or septic shock and ALI
- Randomized controlled Trial
- Cytosorb for 6hrs per day up to 7 days
- Primary Outcome IL-6 serum concentrations
- No difference in secondary outcomes multiple organ dysfunction score, ventilation time and time course of oxygenation

RESEARCH


Open Access

Hemoadsorption with CytoSorb shows a decreased observed versus expected 28day all-cause mortality in ICU patients with septic shock: a propensity-score-weighted retrospective study

Willem Pieter Brouwer^{1,2*}, Servet Duran³, Martijn Kuijper⁴ and Can Ince⁵

- Retrospective observational study
- 67 patients treated with CytoSorb vs 49 matched controls treated with CRRT only
- Decreased observed versus expected 28-day all-cause mortality.
- IPTW analysis: CytoSorb associated with a decreased all-cause mortality at 28 days compared to CRRT alone

Better Patients Selection?

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Effect of Targeted Polymyxin B Hemoperfusion on 28-Day Mortality in Patients With Septic Shock and Elevated Endotoxin Level The EUPHRATES Randomized Clinical Trial

R. Phillip Dellinger, MD, MSc; Sean M. Bagshaw, MD, MSc; Massimo Antonelli, MD; Debra M. Foster, BSc; David J. Klein, MD, MBA; John C. Marshall, MD; Paul M. Palevsky, MD; Lawrence S. Weisberg, MD; Christa A. Schorr, DNP, MSN, RN; Stephen Trzeciak, MD, MPH; Paul M. Walker, MD, PhD; for the EUPHRATES Trial Investigators

- Multicenter RCT in 55 centers in North America
- 450 patients with septic shock and elevated endotoxin activity essay (>0.6)
- Intervention: 2PMX hemoperfusion session (90-120 min) or sham hemoperfusion

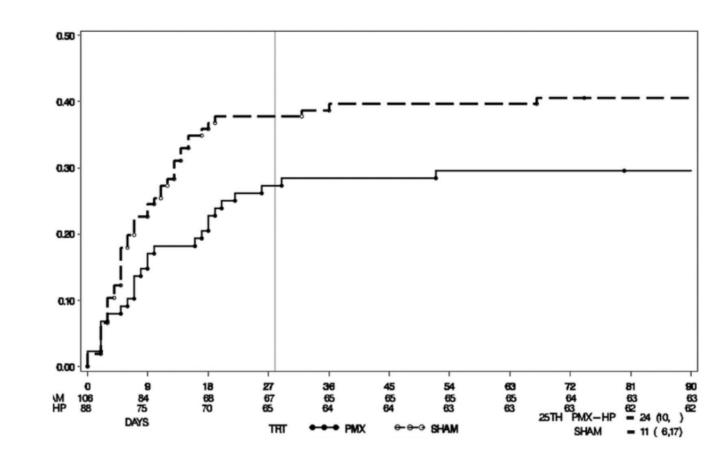
Table 2. Summary of the Primary End Point of 28-Day Mortality for All Participants and for Patients With MODS of More Than 9					
No./Total (%)	(95% CI)				

Table 3. Per-Protocol (Each Group Received 2 Treatments) 28-Day Mortality

	Polymyxin-B				
	Hemoperfusion	Sham	Risk Difference	Risk Ratio	P Value ^a
All Participants	84/223 (37.7)	78/226 (34.5)	3.15 (-5.73 to 12.04)	1.09 (0.85 to 1.39)	.49
>9 MODS ^b	65/146 (44.5)	65/148 (43.9)	0.60 (-10.75 to 11.97)	1.01 (0.78 to 1.31)	.92

	No./Total (%)		,		
Population	Polymyxin-B Hemoperfusion	Sham	— Difference, % (95% CI)	P Value ^a	
All participants	50/173 (28.9)	59/202 (29.2)	-0.3 (-9.5 to 8.9)	.94	
>9 MODS	38/115 (33.0)	47/129 (36.4)	-3.1 (-15.2 to 9.0)	.58	

Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme endotoxemia: a post hoc analysis of the EUPHRATES trial


CrossMark

D. J. Klein^{1*}, D. Foster², P. M. Walker², S. M. Bagshaw³, H. Mekonnen⁴ and M. Antonelli⁵

Post-hoc analysis of the EUPHRATES trial

Restricted to the 194 patients with EAA ≥0.6–0.89 who completed two treatments (PMX or sham).

Hypothesis generating Future study planned to validate this result.

More Research is Required...

Conclusions

- Septic AKI is common and associated with increased mortality
- When severe, RRT might be required however the ideal timing for initiation remains to be determined
- CRRT is the preferred method of blood puriification during sepsis
- A prescribed dose of 25 ml/kg/h should be *delivered* (prescription of higher dose often necessary)

Conclusions

- Currently published data have failed to demonstrate a benefit of blood purification in sepsis or sepsis like syndromes
- Further research is required to identify patients or clinical situations who could benefit from such interventions

Thank you for your Attention

